semaphore提示您:看后求收藏(笔趣阁www.biqugie.com),接着再看更方便。
问题
??
3??数据值冲突检测与消除问题。
常见的数据转换策略包括X
??
1??平滑处理帮助除去数据中的噪声Y常用的方法包括分箱回归
和聚类等
??
2??聚集处理对数据进行汇总操作例如Y每天的数据经过汇总操
作可以获得每月或每年的总额这一操作常用于构造数据立方体或对数
据进行多粒度的分析
??
3??数据泛化处理用更抽象的概念来取代低层次的数据对象例如Y
街道属性可以泛化到更高层次的概念Y如城市国家Y再比如年龄属性
可以映射到更高层次的概念Y如青年中年和老年。
规范化处理将属性值按比例缩放Y使之落入一个特定的区间Y
比如0~1常用的数据规范化方法包括Min-Max规范化Z-Score规范化
和小数定标规范化等
??
5??属性构造处理根据已有属性集构造新的属性Y后续数据处理直
接使用新增的属性例如Y根据已知的质量和体积属性Y计算出新的属
性密度。
我怎么又困了。