semaphore提示您:看后求收藏(笔趣阁www.biqugie.com),接着再看更方便。
al. (2022) 进一步使用图像-文本对之间的多模态相似性作为奖励函数来训练更精细的字幕模型。除了检索图像元素外、
过检索新闻文章中的视觉基础实体来处理新闻图片标题。视觉基础对话Lee et al., 2021b) 要求检索视觉信息以生成相关的对话回复。Fan et al. (2021)用基于 KNN 的信息获取(KIF)模块增强了生成模型,该模块可检索图像和维基知识。梁等人 (2021)从图像索引中检索与对话框相关的图像,作为响应生成器的基础。Shen 等人 (2021)训练了一个单词-图像映射模型来检索反应的视觉印象,然后使用文本和视觉信息生成反应。文本生成 对于一般的文本生成任务,图像检索也可以帮助扩展上下文。杨等人 (2022a)通过检索现有图像和合成新生成的图像来增强文本模型的 "想象力"。因此,为语言模型注入想象力可以提高许多下游自然语言任务的性能。类似的例子还有 Zhu 等人 (2023)将 "想象力 "。
增强与合成图像和检索图像进行了比较,认为机器生成的图像由于更好地考虑了上下文,可以提供更好的指导。此外,Fang 和 Feng 等人的研究也证明了这一点、 Fang 和 Feng (2022)表明,通过检索短语级别的视觉信息,机器翻译可以得到显著改善,尤其是在文本上下文有限的情况下。图像 RAG 还能帮助医疗报告生成等低资源任务。
可以生成图像和文本的混合物。它表明,在知识密集型生成任务中,检索增强图像生成的效果要好得多,并开辟了多模态上下文学习等新功能。3.2代码软件开发人员试图从大量可用资源中搜索相关信息,以提高工作效率。未知术语的解释、可重复使用的代码补丁以及常见程序错误的解决方案等。Xia et al., 2017). 在 NLP 深度学习进展的启发下,通用检索-增强生成范式已使包括代码补全在内的各种代码智能任务受益匪
同时考虑了未完成代码片段的词汇和语义
信息,利用混合技术将基于词汇的稀疏检索器和基于语义的密集检索器结合起来。首先,混合检索
器根据给定的未完成代码从代码库中搜索相关代码。然后,将未完成代码与检索结果连接起来,并
由