首席设计师提示您:看后求收藏(笔趣阁www.biqugie.com),接着再看更方便。

始动手了。”

短暂思考了片刻,林晓便找到了可以入手的方向,也就是以原子轨道线性组合近似来计算分子轨道波函数:

【ψj=∑Cijχi】

……

随着时间的过去,林晓渐入佳境,虽然不知道最终是什么形式,但是由于对知识的掌控力,让他能够较为轻松地让计算方向是朝着他想要的目标去的。

于是就这样,时间也悄然过去。

这个元旦节假期,虽然是放假,但是对于他来说,都是一样,只是不用去上课这一点比较好,当然,时间进入一月,到了大学的考试周,他的课都已经上完了,所以本身也都不用去上课。

直到元旦节的第三天假期。

“怎么又出现了模形式?”

看着草纸上的那几个代表了模形式的数学符号以及数字,林晓眉头微微一皱。

为什么会弄出模形式来,在林晓的计算当中,这就是一种水到渠成的工作,也就是说,模形式必须出现在他的计算当中。

但是关键问题是,接下来他要怎么办?

上次是在论证光的衍射和干涉与弦相关的时候,他用到了模形式,那个时候是因为和弦理论存在关联的地方,毕竟模形式本来就被运用于弦理论当中。

而现在又是在拓扑中运用到了,但这还是让他感到有些意外。

当然,这些都不是问题,最关键的是,现在如果想要继续往下走,他就又面临了和当初一样的两个选择,要么尝试另选方向,像上次他就搞出了次模形式,然后从另外一个方向对原本目的进行了证明,而除此之外,他就得去尝试证明他的林氏猜想!

以这个模形式作为跳板,沟通函数与层形式之间的关系,然后他就可以将任何原子结构的函数形式转换为层形式,再利用层形式在拓扑领域中的作用,对他解决现在的原子结构拓扑问题,将有着十分巨大的作用。

“层”,是拓扑、代数几何和微分几何中的理论,只要想跟踪给定的几何空间的随着每个开集变化的代数数据,就可以用层。

它在拓扑中的运用,十分重要。

经过了片刻的纠结,林晓最终眼中一定。

“不管了,****。”

那就,把林氏猜想给它证明了!

他的林氏猜想,对于数学的发展来说有着较为重要的意义。

自从三年前,林氏猜想的出现,就已经引起了世界上许多人对林氏猜想的研究。

科幻灵异推荐阅读 More+
仙海蜉蝣

仙海蜉蝣

剑寒衫
(凡人流+不后宫+非系统+超长篇 )原名:仙海蜉蝣 寄蜉蝣于天地,渺沧海之一粟。 这是一个普通小散修历经磨难一步步登仙的故事,过程漫长且艰辛,很难做到一些天之骄子那般越级战斗,也没有什么强大功法与逆天奇遇,只身在这吃人的世界逆行而上,一点一点由平凡变为不平凡。 注:主角的天赋不是很差,所以前期有小门派收会加入门派做过渡,中后期没门派要了也就只能当散修,我想写一个普通人修仙的故事,没什么外挂与厉害
科幻 连载 411万字